A great new distance learning program for Air Force personnel interested in obtaining a bachelor’s degree in meteorology from a top-ranked Research I university – The University of Arizona

Questions:
For program advising, plan of study, and registration, please contact:
The College of Science Academic Advising and Student Services
Phone: (520) 621-8128
Email: atmosci@atmo.arizona.edu

Bachelor of Applied Science in Meteorology
Department of Atmospheric Sciences
The University of Arizona, in conjunction with the US Air Force, announces the new Bachelor of Applied Science degree in meteorology, available through distance learning.

The Program
The Department of Atmospheric Sciences, through The University of Arizona South, is offering a Bachelor of Applied Science degree (BAS) for students interested in the study of weather and the climate.

Students in this program will learn topics such as:
- Dynamic Meteorology
- Physical Climatology
- Remote Sensing
- Computational Atmospheric Science
- Hydroclimatology

Prerequisites
Applicants to this program must hold an Associate of Applied Science (AAS) degree with a concentration in weather. Applicants are encouraged to have completed calculus, though completion of pre-calculus is also acceptable.

Make Full Use of the AAS Degree
Our BAS program in meteorology allows students to fully utilize their AAS degree by applying those credits toward their degree, so that no credits are forfeited. The AAS degree is applied towards a student’s first two years of study. By completing an additional 60 credits in our program, students can earn a BAS degree within two years.

Online, Anytime, Anywhere
Currently students must spend some portion of the degree in residence in Tucson, AZ. However, a major advantage to this program is that a significant number of the courses are offered online, allowing students to complete the degree from anywhere in the world. We expect to offer all courses for this program online within the near future.

Precipitation forecast for an Arizona winter storm using the high resolution Weather Research and Forecasting model (courtesy Michael Leuthold)